
Package: mpmsim (via r-universe)
September 7, 2024

Title Simulation of Matrix Population Models with Defined Life History
Characteristics

Version 3.0.0

Description Allows users to simulate matrix population models with
particular characteristics based on aspects of life history
such as mortality trajectories and fertility trajectories. Also
allows the exploration of sampling error due to small sample
size.

License CC BY-SA 4.0

URL https://github.com/jonesor/mpmsim

BugReports https://github.com/jonesor/mpmsim/issues

Imports dplyr, ggplot2, grDevices, popbio, popdemo, Rage, Rcompadre,
reshape, stats

Suggests knitr, patchwork, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Language en-GB

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Repository https://jonesor.r-universe.dev

RemoteUrl https://github.com/jonesor/mpmsim

RemoteRef HEAD

RemoteSha eb15e144031abb67531023c8ff981470fc3ffe87

Contents
add_mpm_error . 2
calculate_errors . 4

1

https://github.com/jonesor/mpmsim
https://github.com/jonesor/mpmsim/issues

2 add_mpm_error

compute_ci . 6
compute_ci_U . 8
driven_vital_rate . 9
generate_mpm_set . 12
make_leslie_mpm . 14
model_fertility . 16
model_survival . 18
plot_matrix . 20
random_mpm . 21
rand_lefko_mpm . 23
rand_lefko_set . 25
rand_leslie_set . 28
reorganise_matrices . 31
summarise_mpms . 32

Index 34

add_mpm_error Add sampling error to matrix population models (MPMs) based on
expected values of transition rates and sample sizes

Description

Produces a list of matrix population models based on expected values in the transition matrix
and sample size. The expected values are provided in lists of two submatrices: mat_U for the
growth/development and survival transitions and mat_F for the fecundity transitions. The output
mat_U values are simulated based on expected probabilities, assuming a binomial process with a
sample size defined by sample_size. The output mat_F values are simulated using a Poisson pro-
cess with a sample size defined by sample_size.Thus users can expect that large sample sizes will
result in simulated matrices that match closely with the expectations, while simulated matrices with
small sample sizes will be more variable.

Usage

add_mpm_error(mat_U, mat_F, sample_size, split = TRUE, by_type = TRUE)

Arguments

mat_U A list of U submatrices, or a single U submatrix.
mat_F A list of F submatrices, or a single F submatrix.
sample_size either (1) a single matrix of sample sizes for each element of every MPM, (2) a

list of two named matrices ("mat_F_ss", "mat_U_ss") containing sample sizes
for the survival and fertility submatrices of every MPM or (3) a single value
applied to the every element of every matrix.

split logical, whether to split the output into survival and fecundity matrices or not.
Defaults to TRUE.

by_type A logical indicating whether the matrices should be returned in a list by type (A,
U, F, C). If split is FALSE, then by_type must also be FALSE. Defaults to TRUE.

add_mpm_error 3

Details

if any sample_size input is 0, it is assumed that the estimate for the element(s) concerned is known
without error.

Value

list of matrices of survival and fecundity if split = TRUE, otherwise a single matrix of the sum of
survival and fecundity.

Author(s)

Owen Jones jones@biology.sdu.dk

See Also

Other errors: calculate_errors(), compute_ci(), compute_ci_U()

Other errors: calculate_errors(), compute_ci(), compute_ci_U()

Examples

set.seed(42) # set seed for repeatability

First generate a set of MPMs
mpm_set <- rand_lefko_set(n = 5, n_stages = 5, fecundity = c(

0, 0, 4, 8, 10
), archetype = 4, output = "Type4")

Now apply sampling error to this set
add_mpm_error(

mat_U = mpm_set$U_list, mat_F = mpm_set$F_list, sample_size =
50

)

Also works with a single matrix.
mats <- make_leslie_mpm(

survival = c(0.1, 0.2, 0.5),
fertility = c(0, 1.2, 2.4),
n_stages = 3, split = TRUE

)

Sample size is a single value
add_mpm_error(mat_U = mats$mat_U, mat_F = mats$mat_F, sample_size = 20)

Sample size is a list of two matrices
here with a sample size of 20 for reproduction and 10 for growth/survival.
mpm_set <- rand_lefko_set(

n = 5, n_stages = 3, fecundity = c(0, 2, 4),
archetype = 4, output = "Type4"

)

ssMats <- list(

mailto:jones@biology.sdu.dk

4 calculate_errors

"mat_F_ss" = matrix(20, nrow = 3, ncol = 3),
"mat_U_ss" = matrix(10, nrow = 3, ncol = 3)

)

Add sampling error to the matrix models
output <- add_mpm_error(

mat_U = mpm_set$U_list, mat_F = mpm_set$F_list,
sample_size = ssMats

)

Examine the outputs
names(output)
output

calculate_errors Calculate error (standard error or 95%CI) in elements of a matrix
population model.

Description

Given two submatrices of a matrix population model (mat_U and mat_F, the growth/survival matrix
and the reproduction matrix respectively) and a sample size, or matrix/matrices of sample sizes, this
function calculates the standard error or 95% confidence interval (95%CI) for each element of the
matrix. These calculations assume that mat_U is the result of binomial processes (i.e., the survival
(0/1) of a sample of n individuals), while mat_F is the result of Poisson processes (i.e., counts of
offspring from n individuals), where n is the sample size.

Usage

calculate_errors(mat_U, mat_F, sample_size, type = "sem", calculate_A = TRUE)

Arguments

mat_U matrix of mean survival probabilities
mat_F matrix of mean fecundity values
sample_size either (1) a single matrix of sample sizes for each element of the MPM, (2) a list

of two named matrices ("mat_F_ss", "mat_U_ss") containing sample sizes for
the survival and fertility submatrices of the MPM or (3) a single value applied
to the whole matrix

type A character string indicating the type of error to calculate. Must be one of "sem"
(standard error), or "CI95" (95% confidence interval).

calculate_A A logical argument indicating whether the returned error information should
include the A matrix and its error. Defaults to TRUE.

Details

The output is a list containing the original matrices and matrices showing error estimates or confi-
dence intervals.

calculate_errors 5

Value

A list containing the original matrices and the error estimates (or upper and lower confidence inter-
vals) for the U, F and (optionally) A matrices.

Author(s)

Owen Jones jones@biology.sdu.dk

See Also

add_mpm_error() which simulates matrices with known values and sample sizes.

Other errors: add_mpm_error(), compute_ci(), compute_ci_U()

Examples

Set up two submatrices
matU <- matrix(c(

0.1, 0,
0.2, 0.4

), byrow = TRUE, nrow = 2)
matF <- matrix(c(

0, 4,
0., 0.

), byrow = TRUE, nrow = 2)

errors as 95% CI, with a sample size of 20 for all elements
calculate_errors(mat_U = matU, mat_F = matF, sample_size = 20, type = "CI95")

errors as sem, with a sample size of 20 for all elements
calculate_errors(mat_U = matU, mat_F = matF, sample_size = 20, type = "sem")

Sample size is a single matrix applied to both F and U matrices
ssMat <- matrix(10, nrow = 2, ncol = 2)

calculate_errors(
mat_U = matU, mat_F = matF, sample_size = ssMat, type =
"sem"

)

Sample size is a list of two matrices, one for F and one for U.
ssMats <- list(

"mat_F_ss" = matrix(10, nrow = 2, ncol = 2),
"mat_U_ss" = matrix(10, nrow = 2, ncol = 2)

)
calculate_errors(

mat_U = matU, mat_F = matF, sample_size = ssMats, type =
"sem"

)

mailto:jones@biology.sdu.dk

6 compute_ci

compute_ci Compute 95% confidence intervals for derived estimates from a matrix
population model

Description

This function computes the 95% confidence interval for measures derived from a matrix population
model using parametric bootstrapping. In this approach a sampling distribution of the matrix popu-
lation model (MPM) is generated by taking a large number of random independent draws using the
sampling distribution of each underlying transition rate. The approach rests on our assumption that
survival-related processes are binomial, while reproduction is a Poisson process (see the function
add_mpm_error() for details).

Usage

compute_ci(mat_U, mat_F, sample_size, FUN, ..., n_sim = 1000, dist.out = FALSE)

Arguments

mat_U A matrix that describes the growth and survival process.

mat_F A matrix that describes reproduction.

sample_size either (1) a single matrix of sample sizes for each element of the MPM, (2) a list
of two named matrices ("mat_F_ss", "mat_U_ss") containing sample sizes for
the survival and fertility submatrices of the MPM or (3) a single value applied
to the whole matrix

FUN A function to apply to each simulated matrix population model. This function
must take, as input, a single matrix population model (i.e., the A matrix). For
functions that require only the U matrix, use compute_ci_U.

... Additional arguments to be passed to FUN.

n_sim An integer indicating the number of simulations to run. Default is 1000.

dist.out Logical. If TRUE, returns a list with both the quantiles and the simulated esti-
mates. Default is FALSE.

Details

The inputs are the U matrix, which describes the survival-related processes, and the F matrix which
describes reproduction. The underlying assumption is that the U matrix is the average of a binomial
process while the F matrix is the average of a Poisson process . The confidence interval will depend
largely on the sample size used.

Value

If dist.out is FALSE, a numeric vector of the 2.5th and 97.5th quantiles of the estimated measures.
If dist.out = TRUE, a list with two elements: quantiles and estimates. quantiles is a numeric
vector of the 2.5th and 97.5th quantiles of the estimated measures, and estimates is a numeric
vector of the estimated measures.

compute_ci 7

Author(s)

Owen Jones jones@biology.sdu.dk

References

Chapter 12 in Caswell, H. (2001). Matrix Population Models. Sinauer Associates Incorporated.

See Also

Other errors: add_mpm_error(), calculate_errors(), compute_ci_U()

Examples

set.seed(42) # set seed for repeatability

Data for use in example
matU <- matrix(c(

0.1, 0.0,
0.2, 0.4

), byrow = TRUE, nrow = 2)

matF <- matrix(c(
0.0, 5.0,
0.0, 0.0

), byrow = TRUE, nrow = 2)

set.seed(42)

Example of use to calculate 95% CI of lambda
compute_ci(

mat_U = matU, mat_F = matF, sample_size = 10, FUN =
popbio::lambda

)

Example of use to calculate 95% CI of generation time
compute_ci(

mat_U = matU, mat_F = matF, sample_size = 40, FUN =
popbio::generation.time

)

Example of use to calculate 95% CI of generation time and show the
distribution of those bootstrapped estimates
xx <- compute_ci(

mat_U = matU, mat_F = matF, sample_size = 100, FUN =
popbio::generation.time, dist.out = TRUE

)
summary(xx$quantiles)
hist(xx$estimates)

mailto:jones@biology.sdu.dk

8 compute_ci_U

compute_ci_U Compute 95% confidence intervals for derived estimates from the U
submatrix of a matrix population model

Description

This function computes the 95% confidence interval for measures derived from the U submatrix of
a matrix population model using parametric bootstrapping. In this approach a sampling distribution
of the U submatrix is generated by taking a large number of random independent draws using the
sampling distribution of each underlying transition rate. The approach rests on our assumption that
survival-related processes are binomial (see the function add_mpm_error() for details).

Usage

compute_ci_U(mat_U, sample_size, FUN, ..., n_sim = 1000, dist.out = FALSE)

Arguments

mat_U A matrix that describes the growth and survival process.

sample_size either (1) a single matrix of sample sizes for each element of the U matrix, (2) a
single value applied to the whole matrix

FUN A function to apply to each simulated matrix population model. This function
must take, as input, a single U submatrix of a matrix population model (i.e., the
U matrix). For functions that require the A matrix, use compute_ci.

... Additional arguments to be passed to FUN.

n_sim An integer indicating the number of simulations to run. Default is 1000.

dist.out Logical. If TRUE, returns a list with both the quantiles and the simulated esti-
mates. Default is FALSE.

Details

The main inputs is the U matrix, which describes the survival-related processes. The underlying
assumption is that the U matrix is the average of a binomial process. The confidence interval will
depend largely on the sample size used.

Value

If dist.out is FALSE, a numeric vector of the 2.5th and 97.5th quantiles of the estimated measures.
If dist.out = TRUE, a list with two elements: quantiles and estimates. quantiles is a numeric
vector of the 2.5th and 97.5th quantiles of the estimated measures, and estimates is a numeric
vector of the estimated measures.

Author(s)

Owen Jones jones@biology.sdu.dk

mailto:jones@biology.sdu.dk

driven_vital_rate 9

References

Chapter 12 in Caswell, H. (2001). Matrix Population Models. Sinauer Associates Incorporated.

See Also

Other errors: add_mpm_error(), calculate_errors(), compute_ci()

Examples

set.seed(42) # set seed for repeatability

Data for use in example
matU <- matrix(c(

0.1, 0.0,
0.2, 0.4

), byrow = TRUE, nrow = 2)

Example of use to calculate 95% CI of life expectancy
compute_ci_U(

mat_U = matU, sample_size = 10, FUN =
Rage::life_expect_mean

)

Example of use to calculate 95% CI of generation time and show the
distribution of those bootstrapped estimates
xx <- compute_ci_U(

mat_U = matU, sample_size = 100, FUN =
Rage::life_expect_mean, dist.out = TRUE

)

summary(xx$quantiles)
hist(xx$estimates)

driven_vital_rate Calculate driven vital rates

Description

This function calculates new values for a vital rate, such as survival or fecundity that is being
influenced by a driver (e.g., weather). It does this by using a driver variable and a baseline value,
along with a specified slope for the relationship between the driver variable and the vital rate. The
function works on a linearised scale, using logit for survival and log for fecundity, and takes into
account the error standard deviation.

10 driven_vital_rate

Usage

driven_vital_rate(
driver,
baseline_value = NULL,
slope = NULL,
baseline_driver = NULL,
error_sd = 0,
link = "logit"

)

Arguments

driver A vector of driver values.

baseline_value A vector or matrix of baseline values for the vital rate (e.g., survival) that is
being influenced ("driven") by another variable (e.g. a climatic variable).

slope A vector or matrix of slopes for the relationship between the driver variable and
the vital rate being driven.

baseline_driver

The baseline_driver parameter is a single value representing the baseline
driver value. If the driver value is greater than this value and the slope is posi-
tive, then the resulting vital rate will be higher. Conversely, if the driver value is
less than this variable and the slope is positive, then the resulting vital rate will
be less than the baseline value.

error_sd A vector or matrix of error standard deviations for random normal error to be
added to the driven value of the vital rate being modelled. If set to 0 (the default),
no error is added.

link A character string indicating the type of link function to use. Valid values are
"logit" (the default) and "log", which are appropriate for survival (U subma-
trix) and reproduction (F submatrix) respectively.

Details

The relationship between the driver variable and the vital rate is assumed to be linear:

$$V = a * (d - d_b) + x + E$$

Where $$V$$ is the new vital rate (on the scale of the linear predictor), $$a$$ is the slope, $$x$$
is the baseline vital rate, $$d$$ is the driver, $$d_b$$ is the baseline driver and $$E$$ is the error.

The input vital rate(s) (baseline_value) can be a single-element vector representing a single vital
rate (e.g., survival probability or fecundity), a longer vector representing a series of vital rates (e.g.,
several survival probabilities or fecundity values), or a matrix of values (e.g., a U or F submatrix of a
matrix population model). The slopes of the relationship between the vital rate (baseline_value)
and the driver can be provided as a single value, which is applied to all elements of the input vital
rates, or as a matrix of values that map onto the matrix of vital rates. This allows users to simulate
cases where different vital rates in a matrix model are affected in different ways by the same weather
driver. For example, juvenile survival might be more affected by the driver than adult survival. The
baseline_driver value represents the "normal" state of the driver. If the driver is greater than the
baseline_driver and the slope is positive, then the outcome vital rate will be higher. If the driver

driven_vital_rate 11

is less than the baseline_driver variable and the slope is positive, then the outcome vital rate
will be less than the baseline_value. The error_sd represents the error in the linear relationship
between the driver and the vital rate.

Value

Depending on the input types, either a single value, a vector or a list of matrices of driven values
for the vital rate(s) being modelled. The list has a length equal to the length of the driver input
parameter.

Author(s)

Owen Jones jones@biology.sdu.dk

Examples

set.seed(42) # set seed for repeatability

A single vital rate and a single driver
driven_vital_rate(

driver = 14,
baseline_value = 0.5,
slope = .4,
baseline_driver = 10,
error_sd = 0,
link = "logit"

)

A single vital rate and a time series of drivers
driven_vital_rate(

driver = runif(10, 5, 15),
baseline_value = 0.5,
slope = .4,
baseline_driver = 10,
error_sd = 0,
link = "logit"

)

A matrix of survival values (U submatrix of a Leslie model)
with a series of drivers, and matrices of slopes and errors

lt1 <- model_survival(params = c(b_0 = 0.4, b_1 = 0.5), model = "Gompertz")
lt1$fert <- model_fertility(

age = 0:max(lt1$x), params = c(A = 10),
maturity = 3, model = "step"

)

mats <- make_leslie_mpm(
survival = lt1$px, fertility = lt1$fert, n_stages =
nrow(lt1), split = TRUE

)
mats$mat_U

mailto:jones@biology.sdu.dk

12 generate_mpm_set

mat_dim <- nrow(mats$mat_U)

driven_vital_rate(
driver = runif(5, 5, 15),
baseline_value = mats$mat_U,
slope = matrix(.4,
nrow = mat_dim,
ncol = mat_dim

),
baseline_driver = 10,
error_sd = matrix(1, nrow = mat_dim, ncol = mat_dim),
link = "logit"

)

generate_mpm_set Generate lists of Lefkovitch matrix population models (MPMs) based
on life history archetypes

Description

This function is deprecated. Use rand_lefko_set instead.

Usage

generate_mpm_set(
n = 10,
n_stages = 3,
archetype = 1,
fecundity = 1.5,
split = TRUE,
by_type = TRUE,
as_compadre = TRUE,
max_surv = 0.99,
constraint = NULL,
attempts = 1000

)

Arguments

n The number of MPMs to generate. Default is 10.

n_stages The number of stages for the MPMs. Default is 3.

archetype The archetype of the MPMs. Default is 1.

fecundity A vector of fecundities for the MPMs. Default is 1.5.

split A logical indicating whether to split into submatrices. Default is TRUE.

generate_mpm_set 13

by_type A logical indicating whether the matrices should be returned in a list by type (A,
U, F, C). If split is FALSE, then by_type must is coerced to be FALSE. Defaults
to TRUE.

as_compadre A logical indicating whether the matrices should be returned as a CompadreDB
object. Default is TRUE. If FALSE, the function returns a list.

max_surv The maximum acceptable survival value, calculated across all transitions from a
stage. Defaults to 0.99. This is only used if split = TRUE.

constraint An optional data frame with 4 columns named fun, arg, lower and upper.
These columns specify (1) a function that outputs a metric derived from an A
matrix and (2) an argument for the function (NA, if no argument supplied) (3) the
lower acceptable bound for the metric and (4) upper acceptable bound for the
metric. This could be used to specify

attempts An integer indicating the number of attempts To be made when simulating ma-
trix model. The default is 1000. If it takes more than 1000 attempts to make a
matrix that satisfies the conditions set by the other arguments, then a warning is
produced.

Details

This function generates a list of n MPMs according to the specified criteria. Criteria include the
archetype, and the acceptable constraining criteria, which could include lambda, generation time
or any other metric derived from an A matrix. The function attempts to find matrices that fulfil the
criteria, discarding unacceptable matrices. By default, if it takes more than 1000 attempts to find a
suitable matrix model, then an error is produced. However, the number of attempts can be altered
with the attempts parameter.

Value

A list of MPMs that meet the specified criteria.

Author(s)

Owen Jones jones@biology.sdu.dk

See Also

random_mpm() which this function is essentially a wrapper for.

Other Lefkovitch matrices: rand_lefko_mpm(), rand_lefko_set(), random_mpm()

Examples

set.seed(42) # set seed for repeatability

Basic operation, without splitting matrices and with no constraints
generate_mpm_set(

n = 10, n_stages = 5, fecundity = c(0, 0, 4, 8, 10),
archetype = 4, split = FALSE, by_type = FALSE, as_compadre = FALSE

)

mailto:jones@biology.sdu.dk

14 make_leslie_mpm

Constrain outputs to A matrices with lambda between 0.9 and 1.1
library(popbio)
constrain_df <- data.frame(

fun = "lambda", arg = NA, lower = 0.9, upper =
1.1

)
generate_mpm_set(

n = 10, n_stages = 5, fecundity = c(0, 0, 4, 8, 10),
archetype = 4, constraint = constrain_df, as_compadre = FALSE

)

As above, but using popdemo::eigs function instead of popbio::lambda
to illustrate use of argument
library(popdemo)
constrain_df <- data.frame(

fun = "eigs", arg = "lambda", lower = 0.9, upper =
1.1

)
generate_mpm_set(

n = 10, n_stages = 5, fecundity = c(0, 0, 4, 8, 10),
archetype = 4, constraint = constrain_df, as_compadre = FALSE

)

Multiple constraints
Constrain outputs to A matrices with lambda between 0.9 and 1.1, generation
time between 3 and 5 and damping ratio between 1 and 7.
library(popbio)
constrain_df <- data.frame(

fun = c("lambda", "generation.time", "damping.ratio"),
arg = c(NA, NA, NA),
lower = c(0.9, 3.0, 1.0),
upper = c(1.1, 5.0, 7.0)

)
generate_mpm_set(

n = 10, n_stages = 5, fecundity = c(0, 0, 4, 8, 10),
archetype = 4, constraint = constrain_df, as_compadre = FALSE

)

make_leslie_mpm Create a Leslie matrix population model

Description

The function creates a Leslie matrix from inputs of number of stages, fertility (the top row of the
matrix), and survival probability (the value in the sub-diagonal).

Usage

make_leslie_mpm(

make_leslie_mpm 15

survival = NULL,
fertility = NULL,
n_stages = NULL,
lifetable = NULL,
split = FALSE

)

Arguments

survival a numeric value representing the survival probability of each stage along the
lower off-diagonal of the matrix, with the final value being in the lower-right
corner of the matrix. If only one value is provided, this is applied to all survival
elements.

fertility a numeric vector of length n_stages representing the fertility rate of each stage.
If only one value is provided, this is applied to all fertility elements.

n_stages a numeric value representing the number of stages in the matrix

lifetable a life table containing columns px (age-specific survival) and fert (age-specific
fertility)

split a logical argument indicating whether the output matrix should be split into
separate A, U and F matrices (where A = U + F).

Value

A matrix of size n_stages x n_stages representing the Leslie matrix

Author(s)

Owen Jones jones@biology.sdu.dk

References

Caswell, H. (2001). Matrix Population Models: Construction, Analysis, and Interpretation. Sinauer.

Leslie, P. H. (1945). On the use of matrices in certain population mathematics. Biometrika, 33 (3),
183–212.

Leslie, P. H. (1948). Some Further Notes on the Use of Matrices in Population Mathematics.
Biometrika, 35(3-4), 213–245.

See Also

• model_survival() to model age-specific survival using mortality models.

• model_fertility() to model age-specific fertility using various functions.

Other Leslie matrices: rand_leslie_set(), reorganise_matrices()

mailto:jones@biology.sdu.dk

16 model_fertility

Examples

make_leslie_mpm(
survival = 0.5, fertility = c(0.1, 0.2, 0.3),
n_stages = 3, split = FALSE

)
make_leslie_mpm(

survival = c(0.5, 0.6, 0.7), fertility = c(0.1, 0.2, 0.3),
n_stages = 3

)
make_leslie_mpm(

survival = seq(0.1, 0.7, length.out = 4), fertility = 0.1,
n_stages = 4

)
make_leslie_mpm(

survival = c(0.8, 0.3, 0.2, 0.1, 0.05), fertility = 0.2,
n_stages = 5

)

model_fertility Model fertility with age using set functional forms

Description

This function computes fertility based on the logistic, step, von Bertalanffy, Hadwiger, and normal
models. The logistic model assumes that fertility increases sigmoidally with age from maturity
until a maximum fertility is reached. The step model assumes that fertility is zero before the age
of maturity and then remains constant. The von Bertalanffy model assumes that, after maturity,
fertility increases asymptotically with age until a maximum fertility is reached. In this formulation,
the model is set up so that fertility is 0 at the ’age of maturity - 1’, and increases from that point. The
Hadwiger model is rather complex and is intended to model human fertility with a characteristic
hump-shaped fertility. For all models, the output ensures that fertility is zero before the age at
maturity.

Usage

model_fertility(params, age = NULL, maturity = 0, model = "logistic")

Arguments

params A numeric vector of parameters for the selected model. The number and mean-
ing of parameters depend on the selected model.

age A numeric vector representing age. For use in creation of MPMs and life tables,
these should be integers.

maturity A non-negative numeric value indicating the age at maturity. Whatever model is
used, the fertility is forced to be 0 below the age of maturity.

model A character string specifying the model to use. Must be one of "logistic", "step",
"vonbertalanffy","normal" or "hadwiger".

model_fertility 17

Details

The required parameters varies depending on the fertility model. The parameters are provided as a
vector and the parameters must be provided in the order mentioned here.

• Logistic: fx = A/(1 + exp(−k(x− xm)))

• Step: fx =

{
A, x ≥ m

A,x < m

• von Bertalanffy: fx = A(1− exp(−k(x− x0)))

• Normal: fx = A× exp
(
− 1

2

(
x−µ
σ

)2)
• Hadwiger: fx = ab

C

(
C
x

) 3
2 exp

{
−b2

(
C
x + x

C − 2
)}

Value

A numeric vector representing the computed fertility values.

Author(s)

Owen Jones jones@biology.sdu.dk

References

Bertalanffy, L. von (1938) A quantitative theory of organic growth (inquiries on growth laws. II).
Human Biology 10:181–213.

Peristera, P. & Kostaki, A. (2007) Modeling fertility in modern populations. Demographic Re-
search. 16. Article 6, 141-194 doi:10.4054/DemRes.2007.16.6

See Also

model_mortality() to model age-specific survival using mortality models.

Other trajectories: model_survival()

Examples

Compute fertility using the step model
model_fertility(age = 0:20, params = c(A = 10), maturity = 2, model = "step")

Compute fertility using the logistic model
model_fertility(

age = 0:20, params = c(A = 10, k = 0.5, x_m = 8), maturity =
0, model = "logistic"

)

Compute fertility using the von Bertalanffy model
model_fertility(

age = 0:20, params = c(A = 10, k = .3), maturity = 2, model =
"vonbertalanffy"

)

mailto:jones@biology.sdu.dk
https://doi.org/10.4054/DemRes.2007.16.6

18 model_survival

Compute fertility using the normal model
model_fertility(

age = 0:20, params = c(A = 10, mu = 4, sd = 2), maturity = 0,
model = "normal"

)

Compute fertility using the Hadwiger model
model_fertility(

age = 0:50, params = c(a = 0.91, b = 3.85, C = 29.78),
maturity = 0, model = "hadwiger"

)

model_survival Model mortality hazard, survivorship and age-specific survival prob-
ability using a mortality model

Description

Generates an actuarial life table based on a defined mortality model.

Usage

model_survival(params, age = NULL, model, truncate = 0.01)

model_mortality(params, age = NULL, model, truncate = 0.01)

Arguments

params Numeric vector representing the parameters of the mortality model.

age Numeric vector representing age. The default is NULL, whereby the survival tra-
jectory is modelled from age 0 to the age at which the survivorship of the syn-
thetic cohort declines to a threshold defined by the truncate argument, which
has a default of 0.01 (i.e. 1% of the cohort remaining alive).

model A character string specifying the name of the mortality model to be used. Op-
tions are gompertz, gompertzmakeham, exponential, siler, weibull, and
weibullmakeham. These names are not case-sensitive.

truncate a value defining how the life table output should be truncated. The default is
0.01, indicating that the life table is truncated so that survivorship (lx) > 0.01
(i.e. the age at which 1% of the cohort remains alive).

Details

The required parameters varies depending on the mortality model. The parameters are provided as
a vector.

model_survival 19

*For gompertz and weibull, the parameters are b0, b1. *For gompertzmakeham and weibullmakeham
the parameters are b0, b1 and C. *For exponential, the parameter is C. *For siler, the parameters
are a0, a1, C, b0 and b1.

Note that the parameters must be provided in the order mentioned here. x represents age.

• Gompertz: hx = b0e
b1x

• Gompertz-Makeham: hx = b0e
b1x + c

• Exponential: hx = c

• Siler: hx = a0e
−a1x + c+ b0e

b1x

• Weibull: hx = b0b1(b1x)
(b0 − 1)

• Weibull-Makeham: hx = b0b1(b1x)
(b0 − 1) + c

In the output, the probability of survival (px) (and death (qx)) represent the probability of individuals
that enter the age interval [x, x+1] survive until the end of the interval (or die before the end of the
interval). It is not possible to estimate a value for this in the final row of the life table (because there
is no x+ 1 value) and therefore the input values of age (x) may need to be extended to capture this
final interval.

Value

A dataframe in the form of a lifetable with columns for age (x), hazard (hx), survivorship (lx) and
mortality (qx) and survival probability within interval (px).

Author(s)

Owen Jones jones@biology.sdu.dk

References

Cox, D.R. & Oakes, D. (1984) Analysis of Survival Data. Chapman and Hall, London, UK.

Pinder III, J.E., Wiener, J.G. & Smith, M.H. (1978) The Weibull distribution: a method of summa-
rizing survivorship data. Ecology, 59, 175–179.

Pletcher, S. (1999) Model fitting and hypothesis testing for age-specific mortality data. Journal of
Evolutionary Biology, 12, 430–439.

Siler, W. (1979) A competing-risk model for animal mortality. Ecology, 60, 750–757.

Vaupel, J., Manton, K. & Stallard, E. (1979) The impact of heterogeneity in individual frailty on
the dynamics of mortality. Demography, 16, 439–454.

See Also

model_fertility() to model age-specific fertility using various functions.

Other trajectories: model_fertility()

mailto:jones@biology.sdu.dk

20 plot_matrix

Examples

model_mortality(params = c(b_0 = 0.1, b_1 = 0.2), model = "Gompertz")

model_mortality(
params = c(b_0 = 0.1, b_1 = 0.2, C = 0.1),
model = "GompertzMakeham",
truncate = 0.1

)

model_mortality(params = c(c = 0.2), model = "Exponential", age = 0:10)

model_mortality(
params = c(a_0 = 0.1, a_1 = 0.2, C = 0.1, b_0 = 0.1, b_1 = 0.2),
model = "Siler",
age = 0:10

)

model_mortality(
params = c(b_0 = 1.4, b_1 = 0.18),
model = "Weibull"

)

model_mortality(
params = c(b_0 = 1.1, b_1 = 0.05, c = 0.2),
model = "WeibullMakeham"

)

model_mortality(params = c(b_0 = 0.1, b_1 = 0.2), model = "Gompertz")

plot_matrix Plot a matrix as a heatmap

Description

Visualise a matrix, such as a matrix population model (MPM), as a heatmap.

Usage

plot_matrix(mat, zero_na = FALSE, legend = FALSE, na_colour = NA, ...)

Arguments

mat A matrix, such as the A matrix of a matrix population model

zero_na Logical indicating whether zero values should be treated as NA

legend Logical indicating whether to include a legend

na_colour Colour for NA values

... Additional arguments to be passed to ggplot

random_mpm 21

Value

A ggplot object

Author(s)

Owen Jones jones@biology.sdu.dk

See Also

Other utility: summarise_mpms()

Examples

matDim <- 10
A1 <- make_leslie_mpm(

survival = seq(0.1, 0.7, length.out = matDim),
fertility = seq(0.1, 0.7, length.out = matDim),
n_stages = matDim

)
plot_matrix(A1, zero_na = TRUE, na_colour = "black")
plot_matrix(A1, zero_na = TRUE, na_colour = NA)

random_mpm Generate random Lefkovitch matrix population models (MPMs) based
on life history archetypes

Description

This function is deprecated. Use rand_lefko_mpm instead.

Usage

random_mpm(n_stages, fecundity, archetype = 1, split = FALSE)

Arguments

n_stages An integer defining the number of stages for the MPM.

fecundity Fecundity is the average number of offspring produced. Values can be provided
in 4 ways:

• An numeric vector of length 1 to provide a fecundity measure to the top
right corner of the matrix model only.

• A numeric vector of integers of length equal to n_stages to provide fecun-
dity estimates for the whole top row of the matrix model. Use 0 for cases
with no reproduction.

• A matrix of numeric values of the same dimension as n_stages to provide
fecundity estimates for the entire matrix model. Use 0 for cases with no
reproduction.

mailto:jones@biology.sdu.dk

22 random_mpm

• A list of two matrices of numeric values, both with the same dimension as
n_stages, to provide lower and upper estimates of mean fecundity for the
entire matrix model. In the latter case, a fecundity value will be drawn from
a uniform distribution for the defined range. If there is no reproduction in a
particular age class, use a value of 0 for both the lower and upper limit.

archetype Indication of which life history archetype should be used, based on Takada et al.
2018. An integer between 1 and 4.

split TRUE/FALSE, indicating whether the matrix produced should be split into a
survival matrix and a fertility matrix. Yeah true, then the output becomes a list
with a matrix in each element. Otherwise, the output is a single matrix.

Details

Generates a random matrix population model (MPM) with element values based on defined life
history archetypes. Survival and transition/growth probabilities from any particular stage are re-
stricted to be less than or equal to 1 by drawing from a Dirichlet distribution. The user can specify
archetypes (from Takada et al. 2018) to restrict the MPMs in other ways:

• Archetype 1: all elements are positive, although they may be very small. Therefore, transi-
tion from/to any stage is possible. This model describes a life history where individuals can
progress and retrogress rapidly.

• Archetype 2: has the same form as archetype 1 (transition from/to any stage is possible), but
the survival probability (column sums of the survival matrix) increases monotonously as the
individuals advance to later stages. This model, as the one in the first archetype, also allows
for rapid progression and retrogression, but is more realistic in that stage-specific survival
probability increases with stage advancement.

• Archetype 3: positive non-zero elements for survival are only allowed on the diagonal and
lower sub-diagonal of the matrix This model represents the life cycle of a species where ret-
rogression is not allowed, and progression can only happen to the immediately larger/more
developed stage (slow progression, e.g., trees).

• Archetype 4: This archetype has the same general form as archetype 3, but with the further
assumption that stage-specific survival increases as individuals increase in size/developmental
stage. In this respect it is similar to archetype 2.

In all 4 of these Archetypes, fecundity is placed as a single element on the top right of the matrix, if
it is a single value. If it is a vector of length n_stages then the fertility vector spans the entire top
row of the matrix.

The function is constrained to only output ergodic matrices.

Value

Returns a random matrix population model with characteristics determined by the archetype se-
lected and fecundity vector. If split = TRUE, the matrix is split into separate fertility and a growth/survival
matrices, returned as a list.

Author(s)

Owen Jones jones@biology.sdu.dk

mailto:jones@biology.sdu.dk

rand_lefko_mpm 23

References

Caswell, H. (2001). Matrix Population Models: Construction, Analysis, and Interpretation. Sinauer.

Lefkovitch, L. P. (1965). The study of population growth in organisms grouped by stages. Biomet-
rics, 21(1), 1.

Takada, T., Kawai, Y., & Salguero-Gómez, R. (2018). A cautionary note on elasticity analyses in a
ternary plot using randomly generated population matrices. Population Ecology, 60(1), 37–47.

See Also

generate_mpm_set() which is a wrapper for this function allowing the generation of large numbers
of random matrices of this type.

Other Lefkovitch matrices: generate_mpm_set(), rand_lefko_mpm(), rand_lefko_set()

Examples

set.seed(42) # set seed for repeatability

random_mpm(n_stages = 2, fecundity = 20, archetype = 1, split = FALSE)
random_mpm(n_stages = 2, fecundity = 20, archetype = 2, split = TRUE)
random_mpm(n_stages = 3, fecundity = 20, archetype = 3, split = FALSE)
random_mpm(n_stages = 4, fecundity = 20, archetype = 4, split = TRUE)
random_mpm(

n_stages = 5, fecundity = c(0, 0, 4, 8, 10), archetype = 4,
split = TRUE

)
Using a range of values for fecundity
random_mpm(n_stages = 2, fecundity = 20, archetype = 1, split = TRUE)

rand_lefko_mpm Generate random Lefkovitch matrix population models (MPMs) based
on life history archetypes

Description

Generates a random matrix population model (MPM) with element values based on defined life
history archetypes. Survival and transition/growth probabilities from any particular stage are re-
stricted to be less than or equal to 1 by drawing from a Dirichlet distribution. The user can specify
archetypes (from Takada et al. 2018) to restrict the MPMs in other ways:

• Archetype 1: all elements are positive, although they may be very small. Therefore, transi-
tion from/to any stage is possible. This model describes a life history where individuals can
progress and retrogress rapidly.

• Archetype 2: has the same form as archetype 1 (transition from/to any stage is possible), but
the survival probability (column sums of the survival matrix) increases monotonously as the
individuals advance to later stages. This model, as the one in the first archetype, also allows
for rapid progression and retrogression, but is more realistic in that stage-specific survival
probability increases with stage advancement.

24 rand_lefko_mpm

• Archetype 3: positive non-zero elements for survival are only allowed on the diagonal and
lower sub-diagonal of the matrix This model represents the life cycle of a species where ret-
rogression is not allowed, and progression can only happen to the immediately larger/more
developed stage (slow progression, e.g., trees).

• Archetype 4: This archetype has the same general form as archetype 3, but with the further
assumption that stage-specific survival increases as individuals increase in size/developmental
stage. In this respect it is similar to archetype 2.

Usage

rand_lefko_mpm(n_stages, fecundity, archetype = 1, split = TRUE)

Arguments

n_stages An integer defining the number of stages for the MPM.

fecundity Fecundity is the average number of offspring produced. Values can be provided
in 4 ways:

• An numeric vector of length 1 to provide a single fecundity measure to the
top right corner of the matrix model only.

• A numeric vector of integers of length equal to n_stages to provide fecun-
dity estimates for the whole top row of the matrix model. Use 0 for cases
with no reproduction.

• A matrix of numeric values of the same dimension as n_stages to provide
fecundity estimates for the entire matrix model. Use 0 for cases with no
reproduction.

• A list of two matrices of numeric values, both with the same dimension
as n_stages, to provide lower and upper limits of mean fecundity for the
entire matrix model. Use 0 for both lower and upper limits in cases with no
reproduction.

In the latter case, a fecundity value will be drawn from a uniform distribution
for the defined range. If there is no reproduction in a particular age class, use a
value of 0 for both the lower and upper limit.

archetype Indication of which life history archetype should be used, based on Takada et al.
2018. An integer between 1 and 4.

split TRUE/FALSE, indicating whether the matrix produced should be split into a sur-
vival matrix and a fertility matrix. If true, then the output becomes a list with a
matrix in each element. Otherwise, the output is a single matrix. Default is TRUE

Details

In all 4 of these Archetypes, fecundity is placed as a single element on the top right of the matrix, if
it is a single value. If it is a vector of length n_stages then the fertility vector spans the entire top
row of the matrix.

The function is constrained to only output ergodic matrices.

rand_lefko_set 25

Value

Returns a random matrix population model with characteristics determined by the archetype se-
lected and fecundity vector. If split = TRUE, the matrix is split into separate fertility and a growth/survival
matrices, returned as a list.

Author(s)

Owen Jones jones@biology.sdu.dk

References

Caswell, H. (2001). Matrix Population Models: Construction, Analysis, and Interpretation. Sinauer.

Lefkovitch, L. P. (1965). The study of population growth in organisms grouped by stages. Biomet-
rics, 21(1), 1.

Takada, T., Kawai, Y., & Salguero-Gómez, R. (2018). A cautionary note on elasticity analyses in a
ternary plot using randomly generated population matrices. Population Ecology, 60(1), 37–47.

See Also

rand_lefko_set() which is a wrapper for this function allowing the generation of large numbers
of random matrices of this type.

Other Lefkovitch matrices: generate_mpm_set(), rand_lefko_set(), random_mpm()

Examples

set.seed(42) # set seed for repeatability

rand_lefko_mpm(n_stages = 2, fecundity = 20, archetype = 1, split = FALSE)
rand_lefko_mpm(n_stages = 2, fecundity = 20, archetype = 2, split = TRUE)
rand_lefko_mpm(n_stages = 3, fecundity = 20, archetype = 3, split = FALSE)
rand_lefko_mpm(n_stages = 4, fecundity = 20, archetype = 4, split = TRUE)
rand_lefko_mpm(

n_stages = 5, fecundity = c(0, 0, 4, 8, 10), archetype = 4,
split = TRUE

)
Using a range of values for fecundity
rand_lefko_mpm(n_stages = 2, fecundity = 20, archetype = 1, split = TRUE)

rand_lefko_set Generate lists of Lefkovitch matrix population models (MPMs) based
on life history archetypes

mailto:jones@biology.sdu.dk

26 rand_lefko_set

Description

This function generates a list of n MPMs according to the specified criteria. Criteria include the
archetype, and the acceptable constraining criteria, which could include lambda, generation time
or any other metric derived from an A matrix. The function attempts to find matrices that fulfil the
criteria, discarding unacceptable matrices. By default, if it takes more than 1000 attempts to find a
suitable matrix model, then an error is produced. However, the number of attempts can be altered
with the attempts parameter.

Usage

rand_lefko_set(
n_models = 5,
n_stages = 3,
archetype = 1,
fecundity = 1.5,
output = "Type1",
max_surv = 0.99,
constraint = NULL,
attempts = 1000

)

Arguments

n_models An integer indicating the number of MPMs to generate.

n_stages The number of stages for the MPMs. Default is 3.

archetype The archetype of the MPMs. Default is 1.

fecundity Fecundity is the average number of offspring produced. Values can be provided
in 4 ways:

• An numeric vector of length 1 providing a single fecundity measure to the
top right corner of the matrix model only.

• A numeric vector of integers of length equal to n_stages to provide fecun-
dity estimates for the whole top row of the matrix model. Use 0 for cases
with no reproduction.

• A matrix of numeric values of the same dimension as n_stages to provide
fecundity estimates for the entire matrix model. Use 0 for cases with no
reproduction.

• A list of two matrices of numeric values, both with the same dimension
as n_stages, to provide lower and upper limits of mean fecundity for the
entire matrix model.

In the latter case, a fecundity value will be drawn from a uniform distribution
for the defined range. If there is no reproduction in a particular age class, use a
value of 0 for both the lower and upper limit.

output Character string indicating the type of output.

• Type1: A compadreDB Object containing MPMs split into the submatrices
(i.e. A, U, F and C).

rand_lefko_set 27

• Type2: A compadreDB Object containing MPMs that are not split into sub-
matrices (i.e. only the A matrix is included).

• Type3: A list of MPMs arranged so that each element of the list contains
a model and associated submatrices (i.e. the nth element contains the nth A
matrix alongside the nth U and F matrices).

• Type4: A list of MPMs arranged so that the list contains 3 lists for the A
matrix and the U and F submatrices respectively.

• Type5: A list of MPMs, including only the A matrix.

max_surv The maximum acceptable survival value, calculated across all transitions from
a stage. Defaults to 0.99. This is only used the output splits a matrix into the
submatrices.

constraint An optional data frame with 4 columns named fun, arg, lower and upper.
These columns specify (1) a function that outputs a metric derived from an A
matrix and (2) an argument for the function (NA, if no argument supplied) (3) the
lower acceptable bound for the metric and (4) upper acceptable bound for the
metric.

attempts An integer indicating the number of attempts To be made when simulating ma-
trix model. The default is 1000. If it takes more than 1000 attempts to make a
matrix that satisfies the conditions set by the other arguments, then a warning is
produced.

Value

A compadreDB object or list of MPMs that meet the specified criteria.

Author(s)

Owen Jones jones@biology.sdu.dk

References

Caswell, H. (2001). Matrix Population Models: Construction, Analysis, and Interpretation. Sinauer.

Lefkovitch, L. P. (1965). The study of population growth in organisms grouped by stages. Biomet-
rics, 21(1), 1.

Takada, T., Kawai, Y., & Salguero-Gómez, R. (2018). A cautionary note on elasticity analyses in a
ternary plot using randomly generated population matrices. Population Ecology, 60(1), 37–47.

See Also

rand_lefko_mpm() which this function is essentially a wrapper for.

Other Lefkovitch matrices: generate_mpm_set(), rand_lefko_mpm(), random_mpm()

Examples

set.seed(42) # set seed for repeatability

Basic operation, without splitting matrices and with no constraints
rand_lefko_set(

mailto:jones@biology.sdu.dk

28 rand_leslie_set

n_models = 3, n_stages = 5, fecundity = c(0, 0, 4, 8, 10),
archetype = 4, output = "Type5"

)

Constrain outputs to A matrices with lambda between 0.9 and 1.1
library(popbio)
constrain_df <- data.frame(

fun = "lambda", arg = NA, lower = 0.9, upper =
1.1

)
rand_lefko_set(

n_models = 10, n_stages = 5, fecundity = c(0, 0, 4, 8, 10),
archetype = 4, constraint = constrain_df, output = "Type5"

)

As above, but using popdemo::eigs function instead of popbio::lambda
to illustrate use of argument
library(popdemo)
constrain_df <- data.frame(

fun = "eigs", arg = "lambda", lower = 0.9, upper = 1.1
)

rand_lefko_set(
n_models = 10, n_stages = 5, fecundity = c(0, 0, 4, 8, 10),
archetype = 4, constraint = constrain_df, output = "Type5"

)

Multiple constraints
Constrain outputs to A matrices with lambda between 0.9 and 1.1, generation
time between 3 and 5 and damping ratio between 1 and 7.
library(popbio)
constrain_df <- data.frame(

fun = c("lambda", "generation.time", "damping.ratio"),
arg = c(NA, NA, NA),
lower = c(0.9, 3.0, 1.0),
upper = c(1.1, 5.0, 7.0)

)
rand_lefko_set(

n_models = 10, n_stages = 5, fecundity = c(0, 0, 4, 8, 10),
archetype = 4, constraint = constrain_df, output = "Type5"

)

rand_leslie_set Generate a set of random Leslie Matrix Population Models

Description

Generates a set of Leslie matrix population models (MPMs) based on defined mortality and fertility
models, and using model parameters randomly drawn from specified distributions.

rand_leslie_set 29

Usage

rand_leslie_set(
n_models = 5,
mortality_model = "gompertz",
fertility_model = "step",
mortality_params,
fertility_params,
fertility_maturity_params,
dist_type = "uniform",
output = "type1",
scale_output = FALSE

)

Arguments

n_models An integer indicating the number of MPMs to generate.
mortality_model

A character string specifying the name of the mortality model to be used. Op-
tions are gompertz, gompertzmakeham, exponential, siler, weibull, and
weibullmakeham. See model_mortality. These names are not case-sensitive.

fertility_model

A character string specifying the name of the fertility model to be used. Options
are logistic, step, vonBertalanffy, normal and hadwiger. See ?model_fertility.

mortality_params

A two-column dataframe with a number of rows equal to the number of param-
eters in the mortality model. The required order of the parameters depends on
the selected mortality_model (see ?model_mortality):

• For gompertz and weibull: b_0, b_1
• For gompertzmakeham and weibullmakeham: b_0, b_1, C
• For exponential: C
• For siler: a_0, a_1, C, b_0, b_1 If dist_type is uniform these rows

represent the lower and upper limits of the random uniform distribution
from which the parameters are drawn. If dist_type is normal, the columns
represent the mean and standard deviation of a random normal distribution
from which the parameter values are drawn.

fertility_params

A two-column dataframe with a number of rows equal to the number of param-
eters in the fertility model. The required order of the parameters depends on the
selected fertility_model (see ?model_mortality):

• For logistic: A, k, x_m
• For step: A
• For vonBertalanffy: A, k
• For normal: A, mu, sd
• For hadwiger: a, b, C If dist_type is uniform these rows represent the

lower and upper limits of the random uniform distribution from which the
parameters are drawn. If dist_type is normal, the columns represent the

30 rand_leslie_set

mean and standard deviation of a random normal distribution from which
the parameter values are drawn.

fertility_maturity_params

A vector with two elements defining the distribution from which age at maturity
is drawn for the models. The models will coerce fertility to be zero before this
point. If dist_type is uniform these values represent the lower and upper
limits of the random uniform distribution from which the parameters are drawn.
If dist_type is normal, the values represent the mean and standard deviation
of a random normal distribution from which the parameter values are drawn.

dist_type A character string specifying the type of distribution to draw parameters from.
Default is uniform. Supported types are uniform and normal.

output Character string indicating the type of output. Output can be one of the following
types:

• Type1: A compadreDB Object containing MPMs split into the submatrices
(i.e. A, U, F and C).

• Type2: A compadreDB Object containing MPMs that are not split into sub-
matrices (i.e. only the A matrix is included).

• Type3: A list of MPMs arranged so that each element of the list contains
a model and associated submatrices (i.e. the nth element contains the nth A
matrix alongside the nth U and F matrices).

• Type4: A list of MPMs arranged so that the list contains 3 lists for the A
matrix and the U and F submatrices respectively.

• Type5: A list of MPMs, including only the A matrix.
• Type6: A list of life tables.

Default is Type1.

scale_output A logical argument. If TRUE the resulting MPMs or life tables are scaled by
adjusting fertility so that the population growth rate (lambda) is 1. Default is
FALSE.

Value

Returns a CompadreDB object or list containing MPMs or life tables generated using the specified
model with parameters drawn from random uniform or normal distributions. The format of the out-
put MPMs depends on the arguments output. Outputs may optionally be scaled using the argument
scale_output to ensure a population growth rate (lambda) of 1.

If the output is a CompadreDB object, the parameters of the models used to produce the MPM are
included in the metadata.

Author(s)

Owen Jones jones@biology.sdu.dk

See Also

Other Leslie matrices: make_leslie_mpm(), reorganise_matrices()

mailto:jones@biology.sdu.dk

reorganise_matrices 31

Examples

mortParams <- data.frame(
minVal = c(0, 0.01, 0.1),
maxVal = c(0.14, 0.15, 0.1)

)

fertParams <- data.frame(
minVal = c(10, 0.5, 8),
maxVal = c(11, 0.9, 10)

)

maturityParam <- c(0, 0)

rand_leslie_set(
n_models = 5,
mortality_model = "gompertzmakeham",
fertility_model = "normal",
mortality_params = mortParams,
fertility_params = fertParams,
fertility_maturity_params = maturityParam,
dist_type = "uniform",
output = "Type1"

)

reorganise_matrices Reorganise Matrix Population Models

Description

This function reorganises a list of matrix population models, which are split into mat_A, mat_U,
mat_F, and optionally mat_C sub-matrices. It prepares the matrices for easy conversion into a
compadreDB object.

Usage

reorganise_matrices(matrix_list)

Arguments

matrix_list A list of lists, where each sub-list contains the matrices mat_A, mat_U, mat_F,
and optionally mat_C.

Details

This function processes a list of matrix population models, extracting and grouping the sub-matrices
(mat_A, mat_U, mat_F, and optionally mat_C) into separate lists. If a mat_C matrix is not present in
a model, an NA matrix of the same size as mat_U is used as a placeholder.

32 summarise_mpms

Value

A list containing four elements: mat_A, mat_U, mat_F, and mat_C. Each element is a list of matrices
corresponding to the respective matrix type from the input. If mat_C does not exist in a sub-list, it
is replaced with an NA matrix of the same dimensions as mat_U.

Author(s)

Owen Jones jones@biology.sdu.dk

See Also

Other Leslie matrices: make_leslie_mpm(), rand_leslie_set()

Examples

Example usage
matrix_list <- list(

list(
mat_A = matrix(1, 2, 2),
mat_U = matrix(2, 2, 2),
mat_F = matrix(3, 2, 2),
mat_C = matrix(4, 2, 2)

),
list(

mat_A = matrix(5, 2, 2),
mat_U = matrix(6, 2, 2),
mat_F = matrix(7, 2, 2)

)
)
reorganised_matrices <- reorganise_matrices(matrix_list)
reorganised_matrices$mat_A

summarise_mpms Summarise Matrix Population Models

Description

Calculates and summarises various metrics from matrix population models (MPMs) including di-
mension (= age in Leslie matrices), lambda values, maximum fecundity values, maximum growth/survival
transition probabilities, and minimum non-zero growth/survival transition probabilities

Usage

summarise_mpms(x)

Arguments

x A compadreDB object containing matrix population models, typically in a format
compatible with matA, matU, and matF functions.

mailto:jones@biology.sdu.dk

summarise_mpms 33

Value

This function prints summaries of the following metrics:

• lambda values: The lambda values (dominant eigenvalues) of the A matrices.

• max F values: The maximum values from the F matrices.

• max U values: The maximum values from the U matrices.

• minimum non-zero U values: The minimum non-zero values from the U matrices.

See Also

Other utility: plot_matrix()

Examples

mats <- rand_lefko_set(
n = 10, n_stages = 5, fecundity = c(0, 0, 4, 8, 10),
archetype = 4, output = "Type1"

)

summarise_mpms(mats)

Index

∗ Lefkovitch matrices
generate_mpm_set, 12
rand_lefko_mpm, 23
rand_lefko_set, 25
random_mpm, 21

∗ Leslie matrices
make_leslie_mpm, 14
rand_leslie_set, 28
reorganise_matrices, 31

∗ drivers
driven_vital_rate, 9

∗ errors
add_mpm_error, 2
calculate_errors, 4
compute_ci, 6
compute_ci_U, 8

∗ trajectories
model_fertility, 16
model_survival, 18

∗ utility
plot_matrix, 20
summarise_mpms, 32

add_mpm_error, 2, 5, 7, 9
add_mpm_error(), 5

calculate_errors, 3, 4, 7, 9
compute_ci, 3, 5, 6, 9
compute_ci_U, 3, 5, 7, 8

driven_vital_rate, 9

generate_mpm_set, 12, 23, 25, 27
generate_mpm_set(), 23

make_leslie_mpm, 14, 30, 32
model_fertility, 16, 19
model_fertility(), 15, 19
model_mortality (model_survival), 18
model_mortality(), 17
model_survival, 17, 18

model_survival(), 15

plot_matrix, 20, 33

rand_lefko_mpm, 13, 23, 23, 27
rand_lefko_mpm(), 27
rand_lefko_set, 13, 23, 25, 25
rand_lefko_set(), 25
rand_leslie_set, 15, 28, 32
random_mpm, 13, 21, 25, 27
random_mpm(), 13
reorganise_matrices, 15, 30, 31

summarise_mpms, 21, 32

34

	add_mpm_error
	calculate_errors
	compute_ci
	compute_ci_U
	driven_vital_rate
	generate_mpm_set
	make_leslie_mpm
	model_fertility
	model_survival
	plot_matrix
	random_mpm
	rand_lefko_mpm
	rand_lefko_set
	rand_leslie_set
	reorganise_matrices
	summarise_mpms
	Index

